
Computer Architecture =
Instruction Set Architecture +

Organization +
Hardware + …

What is
Computer Architecture

The actual programmer visible instruction
set

instruction set

software

hardware

• INSTRUCTION SET

Instruction-Set Processor Design

• Architecture (ISA) programmer/compiler view

– “functional appearance to its immediate user/system programmer”
– Opcodes, addressing modes, architected registers, IEEE floating point

• Implementation (µarchitecture) processor designer/view

– “logical structure or organization that performs the architecture”
– Pipelining, functional units, caches, physical registers

• Realization (chip) chip/system designer view
– “physical structure that embodies the implementation”
– Gates, cells, transistors, wires

Hardware

• Machine specifics:
– Feature size (10 microns in 1971 to 0.18 microns in 2001)

• Minimum size of a transistor or a wire in either the x or y dimension
– Logic designs
– Packaging technology
– Clock rate
– Supply voltage
…

Applications and Requirements

• Scientific/numerical: weather prediction, molecular modeling
– Need: large memory, floating-point arithmetic

• Commercial: inventory, payroll, web serving, e-commerce
– Need: integer arithmetic, high I/O

• Embedded: automobile engines, microwave, PDAs
– Need: low power, low cost, interrupt driven

• Home computing: multimedia, games, entertainment
– Need: high data bandwidth, graphics

UNIT-1

PARALLEL COMPUTER MODELS

History of ComputersHistory of Computers
• First Generation: Vacuum Tubes
• ENIAC

– Electronic Numerical Integrator And Computer

• Designed and constructed at the University of Pennsylvania
– Started in 1943 – completed in 1946
– By John Mauchly and John Eckert

• World’s first general purpose electronic digital computer
– Army’s Ballistics Research Laboratory (BRL) needed a way to supply trajectory

tables for new weapons accurately and within a reasonable time frame
– Was not finished in time to be used in the war effort

– Its first task was to perform a series of calculations that were used to help determine the feasibility of the hydrogen
bomb

– Continued to operate under BRL management until 1955 when it was disassembled

History of ComputersHistory of Computers

•• Second Generation: TransistorsSecond Generation: Transistors
– Smaller

– Cheaper

– Dissipates less heat than a vacuum tube

– Is a solid state device made from silicon

– Was invented at Bell Labs in 1947

– It was not until the late 1950’s that fully transistorized computers were
commercially available

History of ComputersHistory of Computers

•• Third Generation: Integrated CircuitsThird Generation: Integrated Circuits
• 1958 – the invention of the integrated circuit
• Discrete component

– Single, self-contained transistor
– Manufactured separately, packaged in their own

containers, and soldered or wired together onto
masonite-like circuit boards

– Manufacturing process was expensive and
cumbersome

– The two most important members of the third generation were the IBM
System/360 and the DEC PDP-8

Later GenerationsLater Generations

• Semiconductor Memory
Microprocessors

• LSI Large Scale Integration
• VLSI Very Large Scale Integration
• ULSI Ultra Large Scale Integration

Multiprocessor

• A hierarchical bus system consists of a hierarchy of buses connecting various
systems and sub-systems/components in a computer. Each bus is made up of a
number of signal, control, and power lines. Different buses like local buses,
backplane buses and I/O buses are used to perform different interconnection
functions.

• Switched networks give dynamic interconnections among the inputs and outputs.
Small or medium size systems mostly use crossbar networks. Multistage networks
can be expanded to the larger systems, if the increased latency problem can be
solved.

• Multistage networks or multistage interconnection networks are a class of high-
speed computer networks which is mainly composed of processing elements on
one end of the network and memory elements on the other end, connected by
switching elements.

Multi computers

• Multi computers are message-passing machines which apply packet switching
method to exchange data. Here, each processor has a private memory, but no
global address space as a processor can access only its own local memory. So,
communication is not transparent.

- Virtual Shared Memory (VSM)
- Shared Virtual Memory (SVM)

• Message-Routing Schemes
In multicomputer with store and forward routing scheme, packets are the smallest
unit of information transmission. In wormhole–routed networks, packets are
further divided into flits. Packet length is determined by the routing scheme and
network implementation, whereas the flit length is affected by the network size.

Vector processor and SIMD

• A vector processor or array processor is a central processing unit (CPU) that
implements an instruction set containing instructions that operate on one
dimensional arrays of data called vectors, compared to scalar processors, whose
instructions operate on single data items. Vector processors can greatly improve
performance on certain workloads, notably numerical simulation and similar
tasks.

• Vector processing techniques have since been added to almost all
modern CPU designs, although they are typically referred to as SIMD(differing in
that a single instruction always drives a single operation across a vector register, as
opposed to the more flexible latency hiding approach in true vector processors). In
these implementations, the vector unit runs beside the main scalar CPU, providing
a separate set of vector registers, and is fed data from vector instruction aware
programs.

Parallelism

• A parallel computer is a set of processors that are able to work cooperatively to
solve a computational problem. This definition is broad enough to include parallel
supercomputers that have hundreds or thousands of processors, networks of
workstations, multiple-processor workstations, and embedded systems. Parallel
computers are interesting because they offer the potential to concentrate
computational resources.

• Types
– Instruction level Parallelism

Pipelining
superscalar

– Processor level Parallelism
Array computer
Multiprocessor

Partitioning and scheduling
• Partitioning and scheduling are multiprocessor-dependent issues. Partitioning is

necessary to ensure that the granularity of the parallel program is coarse enough
for the target multiprocessor, without losing too much parallelism. Scheduling is
necessary to achieve a good processor utilisation and to optimise inter-processor
communication in the target multiprocessor.

• The task's sequential execution time (also called the task's size).
• The task's total overhead, which includes scheduling overhead and

communication overhead for the task's inputs and outputs.
• The task's precedence constraints, which specify the parallelism in the partitioned

program.

Program Flow Mechanisms
• Conventional machines used control flow mechanism in which order of

program execution explicitly stated in user programs.
• Dataflow machines which instructions can be executed by determining

operand availability.
• Reduction machines trigger an instruction’s execution based on the

demand for its results.
• Control flow machines used shared memory for instructions and data.

Since variables are updated by many instructions, there may be side
effects on other instructions. These side effects frequently prevent parallel
processing. Single processor systems are inherently sequential.

Amdahl’s LawAmdahl’s Law

• Deals with the potential speedup of a program using
multiple processors compared to a single processor

• Illustrates the problems facing industry in the
development of multi-core machines
– Software must be adapted to a highly parallel execution

environment to exploit the power of parallel processing

• Can be generalized to evaluate and design technical
improvement in a computer system

Gustafson's law

• Gustafson's law addresses the shortcomings of Amdahl’s law, which is based on
the assumption of a fixed Problem size, that is of an execution workload that does
not change with respect to the improvement of the resources. Gustafson's law
instead proposes that programmers tend to set the size of problems to fully exploit
the computing power that becomes available as the resources improve.

• A task executed by a system whose resources are improved compared to an initial
similar system can be split into two parts:
-a part that does not benefit from the improvement of the resources of the
system;
-a part that benefits from the improvement of the resources of the system.

UNIT-2

MEMORY SYSTEMS AND BUSES

Memory hierarchy
• In computer architecture the memory hierarchy is a concept used to discuss

performance issues in computer architectural design, algorithm predictions, and lower
level programming constructs involving locality of reference. The memory hierarchy in
computer storage separates each of its levels based on response time.

• The memory hierarchy in most computers is as follows:

* Processor registers – fastest possible access (usually 1 CPU cycle), only hundreds of
bytes in size

* Level 1 (L1) cache – often accessed in just a few cycles, usually tens of kilobytes

* Level 2 (L2) cache – higher latency than L1 by 2× to 10×, often 512KB or more

* Level 3 (L3) cache – (optional) higher latency than L2, often multiple MB's

* Main memory (DRAM) – may take hundreds of cycles, but can be multiple gigabytes

* Disk storage – hundreds of thousands of cycles latency, but very large

Cache memory
• The central processing unit (CPU) is the brain of the computer. All of the

instructions have to run through the CPU for the various parts of a computer to
work together. CPU chips have been getting smaller and faster as chip technology
has advanced. One of the slower aspects of computer processing is the interaction
between the CPU chip and the main memory in the form of random-access
memory (RAM). Installing more memory is not always a solution - the bottleneck is
often the time it takes to access the memory.

• So, what have chip designers come up with? A small form of memory located
directly on the chip itself. This is the CPU cache. It is much smaller, but can be
accessed much faster than the main memory. The CPU cache stores the most
frequently used pieces of information so they can be retrieved more quickly. This
information is a duplicate of information stored elsewhere, but it is more readily
available.

• Cache memory, also called CPU memory, is random access memory (RAM) that
a computer microprocessor can access more quickly than it can access regular
RAM. This memory is typically integrated directly with the CPU chip or placed on a
separate chip that has a separate bus interconnect with the CPU.

How the CPU Cache Works

• To carry out a particular instruction, the CPU needs a specific piece of
information. The CPU will first check to see if this information is available in
the CPU cache. If the information is found, this is called a cache hit. If the
information is not found, this is called a cache miss, and the CPU goes on
looking for the information elsewhere. In the case of a cache miss, the piece of
information will be found in the main memory, but it will simply take longer.

• A lot of research has gone into how to optimize the design of cache memory.
The result has been somewhat counter-intuitive: smaller is faster. What this
means is that a relatively small CPU cache improves speed, but as the cache
gets really large, it no longer helps as much, and the CPU might as well look for
the information in the main memory.

shared-memory

• In computer programming, shared memory is a method by which
program processes can exchange data more quickly than by reading and writing
using the regular operating system services. For example, a client process may
have data to pass to a server process that the server process is to modify and
return to the client. Ordinarily, this would require the client writing to an output
file (using the buffers of the operating system) and the server then reading that file
as input from the buffers to its own work space.

• Using a designated area of shared memory, the data can be made directly
accessible to both processes without having to use the system services. To put the
data in shared memory, the client gets access to shared memory after checking
a semaphorevalue, writes the data, and then resets the semaphore to signal to the
server (which periodically checks shared memory for possible input) that data is
waiting. In turn, the server process writes data back to the shared memory area,
using the semaphore to indicate that data is ready to be read.

cache memory organization

Cache/Main Memory Structure

Cache operation – overview

• CPU requests contents of memory location
• Check cache for this data
• If present, get from cache (fast)
• If not present, read required block from main

memory to cache
• Then deliver from cache to CPU
• Cache includes tags to identify which block of

main memory is in each cache slot

Cache Read Operation - Flowchart

Cache Design

• Size
• Mapping Function
• Replacement Algorithm
• Write Policy
• Block Size
• Number of Caches

CACHE MEMORY

Principle of locality helped to speed up main
memory access by introducing small fast
memories known as CACHE MEMORIES that
hold blocks of the most recently referenced
instructions and data items.
Cache is a small fast storage device that
holds the operands and instructions most
likely to be used by the CPU.

Mapping techniques

There are three commonly used methods to
translate main memory addresses to cache
memory addresses.
• Associative Mapped Cache
• Direct-Mapped Cache
• Set-Associative Mapped Cache

Set-Associative Mapping

• This is a trade-off between associative and direct
mappings where each address is mapped to a
certain set of cache locations.

• The cache is broken into sets where each set
contains "N" cache lines, let's say 4. Then, each
memory address is assigned a set, and can be
cached in any one of those 4 locations within the
set that it is assigned to. In other words, within
each set the cache is associative, and thus the
name.

ASSOCIATIVITY

• Associativity : N-way set associative cache
memory means that information stored at
some address in operating memory could be
placed (cached) in N locations (lines) of this
cache memory.

• The basic principle of logical segmentation
says that there is only one line within any
particular segment to be capable of caching
information located at some memory address.

Direct Mapping

• To avoid the search through all CM blocks
needed by associative mapping, this method
only allows

blocks in cache memory
blocks in main memory

blocks to be mapped to each Cache Memory
block.

Characteristics of shared memory
systems

• Any processor can directly reference any memory
location.

• Communication occurs implicitly as result of
loads and stores.

• Location of data in memory is transparent to the
programmer.

• Inherently provided on wide range of platforms
(standard processors today have specific extra
hardware for share memory systems)

• Memory may be physically distributed among
processors.

Memory Interleaving

• Memory interleaving is the technique used to
increase the throughput. The core idea is to
split the memory system into independent
banks, which can answer read or write
requests independents in parallel.

Interleaved Memory organization

• Various organization of the physical memory are
included in this section. In order to close up the speed
gap between Cache and main memory. And
interleaving technique is represented allow pipelined
access of the parallel memory modules.

• The memory design goal (interleaving goal) is to
broaden the effective memory bandwidth so that more
memory words can be accessed per unit time.

• The ultimate purpose is to match the memory
bandwidth with the bus bandwidth and with the
processor bandwidth.

Interleaving models

Low order interleaving
Low order interleaving spreads contiguous memory

location across the modules horizontally. This
implies that the low order bits of the memory
address are used to indentify the memory
module. High order bits are the word addresses
(displacement) within each module

High order interleaving
High order interleaving uses the high order bits as

the module address and the low order bits as the
word address within each module.

Low order interleaving

High order interleaving

Bus Arbitration
• The arbitration procedure comes into picture whenever there are more than one

processors requesting the services of bus.
• Because only one unit may at a time be able to transmit successfully over the bus,

there is some selection mechanism is required to maintain such transfers. This
mechanism is called as Bus Arbitration.

• Bus arbitration decides which component will use the bus among various
competing requests.

• A selection mechanism must be based on fairness or priority basis.
• Various methods are available that can be roughly classified as either centralized

or distributed.
• There are three arbitration schemes-

– Daisy – chaining
– Polling
– Independent requesting

UNIT-3

ADVANCED PROCESSORS

Instruction Set Architecture

• Program Operations
– Load a register with a given number
– Copy data from register to another
– Carry out arithmetic & logical operations on a data

word or a pair of data words
– Test a bit or word & jump, or not, depending on result

of the test
– Jump to a point in the program
– Jump to a subroutine
– Carry out a special control operation

Instruction Classification

• Instruction Types
– Data transfers
– Arithmetic, logic
– Rotates, shifts
– Bit set, bit reset, & bit test
– General-purpose, CPU control
– Jumps
– Calls, returns

Data Transfer Instructions

• Used to transfer data from one location to
another
– Register to Register, Register to Memory, Memory

to Register

• MOV
– MOVLW 3 ; W 03h
– MOVWF R1 ; R1 03h

– MOV is same as LDA (Load) in textbook

Transfer Instructions (Jump
Instructions)

• Can be used to jump here & there within
program

• Can be used to control loops
– GOTO – GOTO loop ;go to loop label
– CALL – CALL delay ;call delay
subroutine

CISC versus RISC

• The two conceptions of architectures are in
concurrent relation from the 1975: .

• CISC (Complex Instruction Set Computer)
• RISC (Reduced Instruction Set Computer)

CISC with common cache memory

• CISC machine with microprogramming control
– Control unit
– CPU
– ROM microinstr.
– Cache
– Main memory

CISC with overlapping

• CISC processors became use overlapping of
execution and reading following instruction

• In the 95% of time it is executed over 25%
instructions of all number of kinds

• Processors were equipped by too much
complex instruction decoding controller,
which consumes too much area of chip, it was
solved as Finite State Machine in hardware
(complications with testing)

Basic properties of RISC processors
• Small number of relatively simple instructions
• Every instruction is executed in only one instruction cycle
• Controller is realised by logic net of gates
• Operations use only registers of notepad memory
• High number of programme usable registers
• Introduced changes in hardware need necessary of

optimisation of programme by optimising compilation
• It is addressed to 192 registers for reading of operands and

for loading of result of operations
• The memory is used only by Load/Save (Load/Store)

instructions

RISC – controller with simple logic

• Simple
• Logic Controller CPU
• I - Cache
• D - Cache
• Main Memory

The state of the arts of RISC

• The RISC machines bring the standard solution
as L/S architecture (Load/Store) z The RISC are
able to issue several instructions in one
instruction cycle z This is called superscalar
technique

Superscalar static architecture

• The computational power enhancement is
attained by concatenating of computational
units (the instruction execution is more
parallel)

• The parallel reading of instruction is used: the
architecture is called superscalar static
architecture

• Hardware solution: very long instruction word
(VLIW), which is partially decoded

Superscalar dynamic architecture

• The power enhancement is ensured by
planning of several instructions in every step
of execution

• Instructions of branching causes that some
results of computation are lost, because the
reading must precede instruction execution

• This mechanism is used namely during
reading, and writing data into memory

VLIW

• In VLIW and superscaler both the method
pipelining and replication are employed to
achieve higher performace.

• In both of them it involves specifying multiple
independent operations per instruction.

• However the two architectures differ in a way
they specify such instructions.

• This kind of complexity of specifying instructions
in superscaler computer is at Hardware level

• While as it as software (Compiler) level in VLIW.

VLIW vs Super Scalar

• Super Scalar architectures, in contrast, use
dynamic scheduling that transform all ILP
complexity to the hardware

• This leads to greater hardware complexity that is
not seen in VLIW hardware

• VLIW chips don’t need most of the complex
circuitry that Super Scalar chips must use to
coordinate parallel execution at runtime

VLIW principles

1.The compiler analyzes dependence of all
instructions among sequential code, tries to
extract as much parallelism as possible.

2.Based on the analysis, the compiler re-codes the
piece of sequential code in VLIW instruction
words.

3.Finally, the work left with VLIW hardware is only
fetch the VLIWs from cache, decode them, and
then dispatch the independent primitive
instructions to corresponding function units and
execute.

SIMD - Single Instruction Multiple Data

• Originally thought to be the ultimate
massively parallel machine!

• Some machines built
– Illiac IV
– Thinking Machines CM2
– MasPar
– Vector processors (special category!)

• SIMD performance depends on
– Mapping problem processor architecture
– Image processing

• Maps naturally to 2D processor array
• Calculations on individual pixels trivial
 Combining data is the problem!

– Some matrix operations also

Vector Processor

• Also called an Array Processor.
• Runs multiple mathematical operations on

multiple data elements simultaneously.
• Common in supercomputers of the 1970’s 80’s

and 90’s.
• Today most CPU designs contains at least some

vector processing instructions, typically referred
to as SIMD.

• Typically operate on a few vectors elements per
clock cycle in a pipeline v. SIMD which will
operate on all at once.

Cray Y-MP

V0

V7
V6

V5
V4

V3
V2

V1
 0
 1
 2
 3

 .
 .
 .

62
63

Vector
Registers

Vector
Integer
Units Shift

 Add

Logic

Weight/
Parity

Floating-
Point
Units Multiply

 Add

Reciprocal
Approx.

Scalar
Integer
Units Shift

 Add

Logic

Weight/
Parity

T Registers
(8 64-bit) S Registers

(8 64-bit)

From address
registers/units

Central
Memory

Inter-
Processor
Commun.

CPU

64 bit

64 bit

32 bit

Input/Output

Cray Y-MP’s Interconnection Network
P0

P1

P2

P3

P4

P5

P6

P7

4 4

8 8

1 8

8 8

8 8

8 8

4 4

4 4

4 4

4 4

4 4

4 4

4 4

Sections Subsections
0, 4, 8, ... , 28
32, 36, 40, ... , 92

1, 5, 9, ... , 29

2, 6, 10, ... , 30

3, 7, 11, ... , 31

227, 231, ... , 255

Memory Banks

Unit-4

MULTI PROCESSOR AND MULTI COMPUTERS

Interconnection Structures
• The components that form a multiprocessor system are CPUs, lOPs

connected to input—output devices, and a memory unit that may be
partitioned into a number of separate modules.

• The interconnection between the components can have different physical
configurations, depending on the number of transfer paths that are
available between the processors and memory in a shared memory
system or among the processing elements in a loosely coupled system.

• There are several physical forms available for establishing an
interconnection network, Some of these schemes are presented in this
section:

• 1. Time-shared common bus
• 2, Multiport memory
• 3. Crossbar switch
• 4. Multistage switching network
• 5. Hypercube system

Multiport Memory
• A multiport memory system employs separate buses between each

memory module and each CPU. This is shown in Fig. 13- 3 for four
CPUs and four memory modules (MMs). Each processor bus is
connected to each memory module. A processor bus consists of the
address, data, and control lines required to communicate with
memory.

• The memory module is said to have four ports and each port
accommodates one of the buses. The module must have internal
control logic to determine which port will have access to memory at
any given time.

• Memory access conflicts are resolved by assigning fixed priorities
to each memory port.

• Thus CPU 1 will have priority over CPU 2, CPU 2 will have priority
over CPU 3, and CPU 4 will have the lowest priority.

Crossbar Switch
• The crossbar switch organization consists of a number of

crosspoints that are placed at intersections between
processor buses and memory module paths.

• Figure 13-4 shows a crossbar switch interconnection
between four CPUs and four memory modules.

• The small square in each crosspoint is a switch that
determines the path from a processor to a memory
module.

• Each switch point has control logic to set up the transfer
path between a processor and memory.

• It examines the address that is placed in the bus to
determine whether its particular module is being
addressed.

Pipelining
• Consider the following decomposition for processing the

instructions
– Fetch instruction – Read into a buffer
– Decode instruction – Determine opcode, operands
– Calculate operands (i.e. EAs) – Indirect, Register indirect, etc.
– Fetch operands – Fetch operands from memory
– Execute instructions - Execute
– Write result – Store result if applicable

• Overlap these operations to make a 6 stage pipeline
• The textbook uses a 5 stage pipeline (Fetch/Decode/Operand

Fetch/Execute/Write Back)

Pipelined Processors

• It is technique of decomposing a sequential
process into sub operation, with each sub
operation completed in dedicated segment.

• Pipeline is commonly known as an assembly line
operation.

• It is similar like assembly line of car
manufacturing.

• First station in an assembly line set up a chasis,
next station is installing the engine, another
group of workers fitting the body.

Pipeline Performance

• The potential increase in performance
resulting from pipelining is proportional to the
number of pipeline stages.

• However, this increase would be achieved only
if all pipeline stages require the same time to
complete, and there is no interruption
throughout program execution.

• Unfortunately, this is not true.
• Floating point may involve many clock cycle

Pipeline Performance

F1

F2

F3

I1

I2

I3

E1

E2

E3

D1

D2

D3

W1

W2

W3

Instruction

F4 D4I4

Clock cycle 1 2 3 4 5 6 7 8 9

Figure 8.3. Effect of an execution operation taking more than one clock cycle.

E4

F5I5 D5

Time

E5

W4

Pipeline Performance
• The previous pipeline is said to have been stalled for two clock cycles.
• Any condition that causes a pipeline to stall is called a hazard.
• Data hazard – any condition in which either the source or the destination

operands of an instruction are not available at the time expected in the
pipeline. So some operation has to be delayed, and the pipeline stalls.

• Instruction (control) hazard – a delay in the availability of an instruction
causes the pipeline to stall.[cache miss]

• Structural hazard – the situation when two instructions require the use of
a given hardware resource at the same time.

• Again, pipelining does not result in individual instructions being executed
faster; rather, it is the throughput that increases.

• Throughput is measured by the rate at which instruction execution is
completed.

• Pipeline stall causes degradation in pipeline performance.
• We need to identify all hazards that may cause the pipeline to stall and to

find ways to minimize their impact.

Instruction pipeline design

• Instruction Cycle State Diagram

Instruction Pipeline

• An instruction pipeline is a technique used in
the design of computers and other digital
electronic devices to increase the instructions
that can be executed in a unit of time.

Unit-5

DATA FLOW COMPUTERS AND VLSI
COMPUTATIONS

data flow computer architecture-
Dataflow languages

• Main characteristic: The single-assignment rule
– A variable may appear on the left side of an assignment only once

within the area of the program in which it is active.

• Examples: VAL, Id, LUCID

• A dataflow program is compiled into a dataflow graph which is a
directed graph consisting of named nodes, which represent
instructions, and arcs, which represent data dependences among
instructions.
– The dataflow graph is similar to a dependence graph used in

intermediate representations of compilers.
• During the execution of the program, data propagate along the arcs

in data packets, called tokens.
• This flow of tokens enables some of the nodes (instructions) and

fires them.

Two important characteristics of
dataflow graphs

• Functionality: The evaluation of a dataflow
graph is equivalent to evaluation of the
corresponding mathematical function on the
same input data.

• Composability: Dataflow graphs can be
combined to form new graphs.

Static Dataflow

• A dataflow graph is represented as a collection of
activity templates,
each containing:
– the opcode of the represented instruction,
– operand slots for holding operand values,
– and destination address fields, referring to the

operand slots in sub-sequent activity templates that
need to receive the result value.

• Each token consists only of a value and a
destination address.

Dataflow graph and Activity template

*

data token

acknowledge signal

data arc

acknowledgement arc

sqrt

x y

z

n i

n j

32

Acknowledgement signals
• Notice, that different tokens destined for the same destination

cannot be distinguished.
• Static dataflow approach allows at most one token on any one arc.
• Extending the basic firing rule as follows:

– An enabled node is fired if there is no token on any of its output arcs.
• Implementation of the restriction by acknowledge signals

(additional tokens), traveling along additional arcs from consuming
to producing nodes.

• The firing rule can be changed to its original form:
– A node is fired at the moment when it becomes enabled.

• Again: structural hazards are ignored assuming unlimited resources!

Dynamic Dataflow
• Each loop iteration or subprogram invocation should be able to

execute in parallel as a separate instance of a reentrant subgraph.
• The replication is only conceptual.
• Each token has a tag:

– address of the instruction for which the particular data value is
destined

– and context information
• Each arc can be viewed as a bag that may contain an arbitrary

number of tokens with different tags.
• The enabling and firing rule is now:

A node is enabled and fired as soon as tokens with identical tags are
present on all input arcs.

• Structural hazards ignored!

What are Systolic Arrays?What are Systolic Arrays?
• This is a form of pipelining, sometimes in more than one dimension.
• Machines have been constructed based on this principle, notable the

iWARP, fabricated by Intel.
•• Laying out algorithms in VLSI’Laying out algorithms in VLSI’

 efficient use of hardware
 not general purpose
 not suitable for large I/O bound applications
 control and data flow must be regular
 The idea is to exploit VLSI efficiently by laying out algorithms (and hence architectures) in 2-D

(not all systolic machines are 2-D, but probably most are)

 Simple cells
 Each cell performs one operation

 (usually)

Systolic Computing
• Definition 1.
 sys·to·le (sîs¹te-lê) noun
 The rhythmic contraction of the heart, especially of the ventricles, by which blood

is driven through the aorta and pulmonary artery after each dilation or diastole.
 [Greek sustolê, contraction, from sustellein, to contract. See systaltic.]
 — sys·tol¹ic (sî-stòl¹îk) adjective
 American Heritage Dictionary

• Definition 2.
• Data flows from memory in a rhythmic fashion, passing through many processing

elements before it returns to memory.
• Definition 3.
• A set of simple processing elements with regular and local connections which

takes external inputs and processes them in a predetermined manner in a
pipelined fashion

Systolic computers have both Systolic computers have both
pipelining and parallelismpipelining and parallelism

• This is good for computation-intensive tasks but not I/O-
intensive tasks

• e.g. signal processing

• Most designs are simple and regular in order to keep the VLSI
implementation costs low

• programs with simple data and control flow are best

• Systolic computers show both pipelining and parallel
computation

What are the functions of a cell in a
Systolic System?

• Systolic systems consists of an array of PE(Processing Elements)
– processors are called cells,
– each cell is connected to a small number of nearest neighbours in a mesh

like topology.

• Each cell performs a sequence of operations on data that flows
between them.

• Generally the operations are the same in each cell.

• Each cell performs an operation or small number of operations on
a data item and then passes it to its neighbor.

• Systolic arrays compute in “lock-step” with each cell (processor)
undertaking alternate compute/communicate phases.

Reconfigurable processor array
• Reconfigurable Computing (RC) is a computing paradigm

in which algorithms are implemented as a temporally and
spatially ordered set of very complex tasks. These tasks are
executed on a large set of interconnected programmable
hardware elementscomputing paradigm - defines the basic
RC computing model without reference to implementation.

• very complex tasks – commonly referred to as
configurations RC tasks require more time than general
purpose computing instructions and more area than the
typical general purpose execution unit.

• Spatial and temporal partitioning – algorithms are
decomposed into tasks in both the space and time domains.

• hardware elements - at their core RC devices consist of a
very large set of simple programmable elements collectively
called Reconfigurable Execution Unit (REU)

Basic Architecture of today’s
commercial reconfigurable processor

vlsi arithmetic models

• Digital Computer Arithmetic belongs to Computer
Architecture, however, it is also an aspect of logic
design.

• The objective of Computer Arithmetic is to
develop appropriate algorithms that are utilizing
available hardware in the most efficient way.

• Ultimately, speed, power and chip area are the
most often used measures, making a strong link
between the algorithms and technology of
implementation

Basic Operations

• Addition
• Multiplication
• Multiply-Add
• Division
• Evaluation of Functions
• Multi-Media

